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Low rank Approximation for High-dimensional Data
• Hierarchical Tucker Format (HTF) [6] provides compact representation 

of high-dimensional tensors (multi-dimensional arrays);

• Hierarchically organized data allows efficient 
arithmetic operations (linear complexity w.r.t.
dimension under low-rank assumption)

• Rank-Adaptive-Euler-Scheme [7]: Arithmetics
in low-rank tensor format + truncation;

• Benchmark application to diffusion-reaction system 
from epidemiology yields faster computations, 
smaller memory footprint and h-dependence;

• Adaptive cross approximation can be used to compute single quantities of interest, e.g. for 
UQ; integration into multilevel solvers is ongoing.

Classic Numerical Methods
• The software toolbox UG4 [1] provides methods for solving coupled systems of PDEs; 

Modular organization with tight coupling between FE/FV-discretization and solvers;

• Written in C++ with interface for LUA, Python & Jupyter-Notebooks;

• Scalable, parallel-adaptive multilevel solvers are at its core:

• LIMEX-multigrid scheme [3] allows problem-dependent treatment of non-linearities;
→ increases efficiency and robustness using reduced Jacobian; 

• Multigrid Reduction in Time (MGRIT) [4] is an iterative method for solving transient problems; 
→ additional strong scaling due to parallelism in the time domain; 

• Monolithic coupling [5] is the default approach for systems of PDEs; 
→ appropriate smoothers must be designed / selected; 

• Weak form coupling are strategies can be used, e.g. , for processes w/ timescale disparities 
→ select only after analysis of the rate-limiting processes.
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# Degrees of freedom

Scheme Computation speed
(#iterations/second)

Memory footprint 
(in MB)

Mesh size h 1/128 1/256 1/128 1/256

Classic Forward-Euler 13.87 ± 0.03 3.18 ± 0.02 5450 21630

Rank-Adaptive-Euler 19.03 ± 0.09 13.72 ± 0.14 22 33

Summary
Simulating subsurface processes involves multiple layers of complexity. These challenges arise from several factors: (1) Geometric considerations, including anisotropies and heterogeneities in the
porous medium, fractures, thin layers, and moving phreatic surfaces. (2) Governing equations, which typically form a transient system of partial differential equations (PDEs) with nonlinear
interactions and couplings between physical variables. (3) Interdependence of geometry and equations, where the description of the subsurface structure is intrinsically linked to the mathematical
formulations. Developing efficient solvers for these problems is nontrivial, requiring careful selection of spatio-temporal discretization methods and linear solvers that can be integrated into high-
performance computing (HPC) frameworks.This study presents a unified solver framework that combines scalable multigrid solvers [1,2] in time and space with a linearly implicit extrapolation scheme
[3,4]. We demonstrate the effectiveness of this approach across various applications, focusing on flow and transport problems. We assess the robustness of our numerical methods, develop
appropriate error estimators, and provide scalability results in an HPC environment.

Transport in Fractured Rocks
• Transport in fracture networks and the surrounding rock matrix require a fully coupled 

approach; primary unknows: pressure p and concentration c;

• Semi-discrete (reduced dimensional) treatment of fractures allows for conservation of mass 
and discontinuities across fracture;

• Time-stepping in LIMEX-multigrid is h-dependent (data not shown);
Problem can be solved with robust weak scaling.

Surface and Subsurface flow
• Weak (iterative) coupling can be used, e.g. for coupling surface and subsurface flow using 

St.-Venant-eqn. (1D), shallow-water-eqn. (2D) on surface; unsaturated flow in soil (3D); 

• Separate adaptive LIMEX time integration schemes for surface- and subsurface; 

• Exchange fluxes are handled via boundary conditions on the subsurface domain and source 
terms in the surface equations; iterative boundary condition switching overcomes timescale 
disparities imposed by different flow velocities.
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Poroelastic Soil Deformation
• Application for the fully coupled, quasi-static Biot equation for Barry-Mercer-benchmark (2D);

Discretization with Taylor-Hood- elements (P2-P1) in space, backward Euler in time; 
(resulting in 9’684’660’224 = 2’364’419 x 4’096 degrees of freedom)

• Multigrid solver with a fixed stress smoother is robust w.r.t size of mesh and time step;
yet strong scaling stalls, when the coarse grid solver becomes the bottleneck;

• MGRIT provides additional acceleration:
Backward Euler: 10,800 seconds on 64 cores (strong scaling limit);
Parareal (two-level): 2,200 seconds / 4.94 rel. speedup  on 8’192 cores;
MGRIT: 740 seconds / 14.62 rel. speedup on 65’536 cores.

Figure 5: Barry-Mercer benchmark features an oscillating point source triggering a 
 deformation (left). Strong scaling of MGRIT (right). 

Figure 1: Left: Weak scaling of the multigrid solver (Poisson‘s equation, 3D). Center/right: Impact of adaptivity (skin jumping coefficient problem, 3D). Results on HAWK, HLRS Stuttgart.
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Density Driven Flow
• Density effects play an important role, when large gradients in concentration or temperature 

are present; full coupling is required;

• Key ingredients for LIMEX: Fixed velocity approximation for reduced Jacobian; weighted L2-
and H1-semi norm for measuring error w.r.t. concentration and pressure.

• A saturation-dependent generalization of the density-driven flow problem extends the method 
extends to unsaturated media; as for the Richards-Eqn. Additional nonlinearities introduced 
by water retention curves in the Van Genuchten-model.

Figure 3.: Left: Development of a fresh 
water lens under an island. Depicted are 
phreatic surface (red) and fresh water 
surface (green).  Right: Validation of the 
transient process with experimental data 
from (Stoeckl et al., 2012).

Figure 2: Left: Illustration of density driven flow process 
(top). Primary unknowns are the fluid pressure p, and salt 
mass fraction w. Density and viscosity depends on w, 
resulting in a highly non-linear system.

Right: Solver friendly LIMEX-discretisation with reduced 
Jacobian yields improved time-stepping and accelerates 
run times .

Figure 3.: Left: Visualiization of transport in a network of 
45 fractures. Rock matrix excluded for the sake of visual 
convenience  Top: Result of weak scaling.  
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