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Introduction and Motivation
In the noisy intermediate-scale quantum (NISQ) era, quantum computers 
are often too noisy for meaningful computation.
• Error correction requires too many qubits with high fidelity.
• We can use classical processors to enhance the quality of the results 

after computation on a quantum processor ⇒ Error mitigation.

The state preparation and measurement
(SPAM) protocol is a simple protocol
that mitigates SPAM errors. It is used,
for example, in Qiskit [1].
• Set up all possible basis states.
• Perform measurement.
• Create complete assignment matrix 𝑀

(see Fig 1).
• Use least squares method to mitigate

error [2] (see Equ. (1), 𝑉 = measured
frequencies, 𝑋 = mitigated frequencies). 

• No gate errors considered!
• Motivation for this work is to include

gate errors and make the mitigation
scalable.

General error mitigation [2] improves
SPAM protocol to consider gate errors
as well.
• Split circuits in two parts.
• Invert both circuits.
• Create complete assignment matrix.
• Use least squares method to mitigate

error.
• Exponential number of calibration

circuits (2!"#) required!

Scalable Mitigation Method
How can we make the error mitigation scalable to large
qubit numbers?
• Observation: Complete

assignment matrix has a
lot of entries close to 0
(see dark parts in Fig 3).

• Idea: Define a threshold
and only consider larger
entries for mitigation.

• Problem: We cannot
create the full matrix.

• Idea: Run circuit and only
consider 𝑘 largest states in
the output for mitigation.

• How to choose the
optimal 𝑘?

• We can calculate a score
that quantifies the quality
of mitigation: ∆𝑄 (see be-
low for detail).

• There is an optimum be-
tween ∆𝑄 and the matrix
size if we use the true
number of non-zero out-
put states for mitigation
(see Fig. 4).

• Idea: We increase 𝑘 itera-
tively until ∆𝑄 becomes
constant.

• Problem: Calculating ∆𝑄 
requires the simulated
frequencies.

• Solution: We introduce
the score ∆𝑅 which repla-
ces ∆𝑄. We no longer re-
quire simulated frequencies.

Conclusion
• The new mitigation protocol 

builds upon a general 
matrix based error 
mitigation method.

• Our tests show that the 
method performs 
comparably well while 
reducing the matrix size 
significantly.
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Scalable Matrix Based
Error Mitigation

𝑠: simulated frequencies 
𝑥: mitigated frequencies
𝑣: measured frequencies

∆𝑅 = .
$%#

&!

(𝑣$ − 𝑥$)& (2)

Experimental Results
We performed all tests on IBM Q 
superconducting devices.
• A total of 1853 random circuits

were generated.
• 2-7 qubits with simulated data

for comparison.
• Scaling test with 100 qubits

(results not shown).

Results:
• Mitigation works comparably well

using the sparse matrix (see Fig 7).
• The size of the sparse matrix is

exponentially smaller (see Fig 6).

Fig 6: Average number of matrix elements for the 
sparse and full matrix at different circuit widths.

Fig 7: ΔQ for randomly created circuits with full and 
sparse matrices.

Fig 3: Average of 103 assignment matrices 
with 7 qubits plotted as a heat map. The 

columns represent the values of the measured 
frequencies.

Fig 4: ∆𝑄 and the matrix size as a function of
𝑘. We see that the mitigation quality does not 

improve beyond 𝑘 = 4, which is also the 
number of non-zero output states for this 

example.

Fig 5: ∆𝑅 and ∆𝑄 plotted as a function of 𝑘. 
We see that ∆𝑅 can serve as replacement for 
∆𝑄, since the slopes of both go to zero at the 

same 𝑘.

Fig 1: Creation of complete assignment matrix 
for SPAM protocol.

min 𝑓 𝑥 =.
'%#

&!

(𝑣' − (𝑀𝑋)')& (1)

∆𝑋 = .
$%#

&!

(𝑥$ − 𝑠$)& (3)

∆𝑉 = .
$%#

&!

(𝑣$ − 𝑠$)& (4)

∆𝑄 = ∆𝑉 − ∆𝑋 (5) 
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Fig 2: Creation of complete assignment matrix 
for the general error mitigation protocol.
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